

Course number: ECE 200	Course name: Academic and	
	professional communication for	
	Engineering	
لغة تدريس المقرر: English	Pre-requisites: ENG 104	
Credit hours: 3 (3-1-0)	Course level: Level 4/Year 2	
	چه روه مو	

Course Description

وصف المقرر:

The first part of the program is to train students to write a 1500 word source based report on a topic in their field of study. They should develop skills such as APA style of documentation, advanced internet search and library research skills. The second part of the program is to enable Students to the world of work starting with the job hunt (job applications, cover letters, resumes, interviews) and leading to the most important aspects of business correspondence(letter formats, style, tone, inquiry, special request and complaint). The third part of the program is to Instruct on advanced presentation skills for public speaking in both academic and professional environments.

Course objectives

أهداف المقرر:

The course aims at developing the various communication skills through a series of tasks such as classroom activities, and home assignments that encourage engineering students to combine their knowledge of English with their technical knowledge needed in their future careers for a good professional conduct.

Course Outcomes

مخرجات التعليم:

Upon completing the course, the student should be able to:

- 1. The students should be able to create technical report as per the requirements and demands.
- 2. The students should have fluency to correspond in different situations such as job applications, cover letters, resumes, inquiry etc...
- 3. The students should have confidence to face job interviews, customer presentations and group discussions.
- 4. The students should be articulate enough in academic and professional environments.

الكتاب المقرر والمراجع المساندة: Textbook and references

Successful Writing at Work by Philip C. Kolin, 4th ed., 2015

Summarized Course Description

Course number: ECE 210	Course name: Electric Circuits (1)	
لغة تدريس المقرر : English	Pre-requisites: MATH205 &	
	PHYS103	
Credit hours: 3 (2+2+0)	Course level: Level 4 /Year2	
Course Description	وصف المقرر:	

Course Description

Circuit elements, Basic laws: Ohm's, KVL, KCL, and Power calculations. Resistive circuits: voltage and current divider rules, Dependent sources. Circuit analysis techniques: Nodal and Mesh analysis. Network theorems: Thevenin's Norton's, Source transformation, Superposition, Maximum power transfer. Energy storage elements: definitions and voltage-current relationships. Responses of first order LR and LC circuits. Responses of second order circuits. Phasor steady-state sinusoidal circuits analysis.

Course objectives

- Apply basic laws: Ohms law, KVL, KCL and power calculations. 1.
- 2. Analyze resistive networks' and simplify complicated networks.
- 3. Use different circuit analysis techniques.
- 4. Deal with circuit containing energy storage elements.
- 5. Determine transient and steady state responses of first order circuits.
- 6. Perform Phasor frequency domain analysis.

Course Outcomes

مخرجات التعليم:

Upon completing the course, the student should be able to:

- Apply knowledge of mathematics, science, and engineering to the analysis and 1. design of electrical circuits.
- 2. Identify, formulate, and solve engineering problems in the area circuits and systems.
- 3. Design an electric system, components or process to meet desired needs within realistic constraints.

Textbook and references

الكتاب المقرر والمراجع المساندة:

Book	Authors	Publisher	Publication
			year
Electric Circuits	James Nilsson and Susan Riedel	Pearson	2014
Fundamentals of Electric Circuits	Charles K. Alexander, Matthew N. O. Sadiku	McGraw Hill	2016
Introductory Circuit Analysis	Robert Boylesta	Pearson	2016

أهداف المقرر:

Course number: ECE 260	Course name: Digital Logic Circuit Design
لغة تدريس المقرر : English	Pre-requisites: MATH 103T
Credit hours: 4 (3-2-0)	Course level: Level - 5

Course Description

وصف المقرر :

أهداف المقرر:

Number systems & codes. Logic gates. Boolean algebra. Karnaugh maps. Analysis and synthesis of combinational systems. Decoders, multiplexers, adders and subtractors, PLA's. Types of flip-flops. Memory concept. Counters. Registers. Sequential circuit design. System level digital design. HDL (Verilog) use in the design and synthesis of digital systems. Field-programmable gate arrays (FPGAs).

Course objectives

- 1. Introduce digital principle with emphasis on logic design.
- 2. Familiarize the students with necessary mathematical tools such as number systems, codes, and Boolean algebra .
- 3. Present the principle of analysis and design of computational logic circuits.
- 4. Present the principle of analysis and design of sequential logic circuits.

Course Outcomes	مخرجات التعليم:

Upon completing the course, the students will be able to:

- 1. Understand basic terminology, types of logic gates (AND, OR, NOT, NAND, NOR, XOR)
- 2. Perform the basic operations used in computers and other digital systems.
- 3. Apply basic rules of Boolean algebra, De Morgan's laws
- 4. Utilize the universality of NAND and NOR gates for implementing logic functions.
- 5. Use Karnaugh maps for circuit minimization.
- 6. Analyze and design computational logic circuits.
- 7. Analyze and design sequential logic circuits.
- 8. Ability to use CAD tools to simulate and verify logic circuits.

الكتاب المقرر والمراجع المساندة: Textbook and references

Text Book: Digital design by M Morris Mano & Michael D. Ciletti, 5th edition (or later), Pearson; 5 edition (January 9, 2012), ISBN-13: 978-0132774208 ISBN-10: 0132774208

References:

Alan B. Marcovitz, Introduction to Logic Design, third edition, McGraw Hill, 2010 John F. Wakerly, Digital Design:Principles and Practices Package, fifth Edition, Pearson Education, 2017

Summarized Course Description

Course number: ECE 211	Course name: Electric Circuits (2)
لغة تدريس المقرر: English	Pre-requisites: ECE 210
Credit hours: 3 $(2+2+0)$	Course level: Level - 5 Year3

Course Description

Three-phase circuits and power calculation, linear op-amp and op-amp circuits, transient and steady state response of the first-order and the second-order circuits, Laplace transform and solution of circuits in complex-frequency domain, frequency response of passive circuits, transfer functions, poles and zeros, resonance networks, and filters, two-Port networks, mutually-coupled coils and the ideal transformer.

Course objectives

أهداف المقرر:

وصف المقرر:

- Understand and analyze AC power generation and consumption
- Design power factor correction and power matching circuits.
- Understand and analyze three phase electrical systems.
- Understand and analyze transformers.
- Identify, characterize, and design RLC Filters.
- Characterize and analyze two-port electrical networks

Course Outcomes

مخرجات التعليم:

Upon completing the course, the student should be able to:

- **1.** An ability to apply knowledge of mathematics, science, and engineering to the analysis of electrical circuits.
- **2.** An ability to apply knowledge of mathematics, science, and engineering to the design of electrical circuits
- 3. An ability to identify, formulates, and solves basic electrical engineering problems.
- **4.** An ability to use the techniques, skills, and modern engineering tools such as Multisim to analysis and design electrical circuits.
- 5. An ability to conduct experiments, as well as to analyze and interpret data.

Textbook and references

الكتاب المقرر والمراجع المساندة:

Book	Authors	Publisher	Publication year
Electric Circuits	James Nilsson and Susan Riedel	Pearson	2014
Fundamentals of Electric Circuits	Charles K. Alexander, Matthew N. O. Sadiku	McGraw Hill	2016
Introductory Circuit Analysis	Robert Boylestad	Pearson	2016

Summarized Course Description

Course number: ECE 202	Course name: Engineering	
	Mathematics	
لغة تدريس المقرر: English	Pre-requisites: MATH221T	
Credit hours: $3(3+0+0)$	Course level: Level 5 Year 3	
Course Description	وصف المقرر :	

Special functions. Bessel's functions and Legendre polynomials. Vector analysis including vector fields, divergence, curl, line and surface integrals, Green's, Gauss' and Stokes' theorems. Sturm-Liouville theory. Complex Numbers, Functions of a complex variable, differential complex calculus. Complex integration, Cauchy's theorem. Complex series, Taylor and Laurent series. Residue theorem. Introduction to partial differential equations and boundary value problems in rectangular, cylindrical and spherical coordinates.

Course objectives

To develop and enhance the student's ability to solve engineering problems using mathematical tools

Course Outcomes

مخرجات التعليم:

Upon completing the course, the student should be able to:

- 1. Apply knowledge of a vector field and its differentiation (divergence and curl) and boundary value problem as applied to electrical systems.
- 2. Explain and discuss the theorem of Green, Stokes, Divergence, Sturm-Liouville, Cauchy Integral and Residue.
- 3. Clarify complex calculus and partial differential equations and their applications in Electrical Engineering field
- 4. Interpret heat and wave equations appropriate for electrical engineering

Textbook and references

الكتاب المقرر والمراجع المساندة:

Book	Authors	Publisher	Publication
			year
Advanced Modern	Glyn James	Prentice Hall	2011
Engineering Mathematics			
Advanced Engineering	Erwin	Wiley	2011
Mathematics	Kreyszig		
Engineering Mathematics with	Xin-She Yang	Academic Press	2017
Examples and Applications			

ojectives

أهداف المقرر:

Summarized Course Description

Course number: ECE 240	Course name: Semiconductor Devices
لغة تدريس المقرر: English	Pre-requisites: PHYS103
Credit hours: 3 (3-0-0)	Course level: Level - 5

Course Description

وصف المقرر:

Principal classes of semiconductor devices in modern microelectronics and photonics. Charge carrier statistics and transport, luminescence, photoconductivity, p-n junctions, metal- semiconductor junctions, diodes, field-effect transistor (MOSFET), bipolar junction transistor (BJT), photodiodes, Light-emitting diodes (LED), laser diodes (LD).

Course objectives

أهداف المقرر:

- 1. Explain the basic theory and operation of semiconductor devices used for integrated circuit applications.
- Describe the techniques used in optimizing semiconductor device design.
 Provide the students with a basic understanding of forming the most important semiconductor devices in modern microelectronics and photonics.

Course Outcomes

خرجات التعليم:

Upon completing the course, the student should be able to:

1. Understand electronic structure, charge carrier statistics, and transport properties in semiconductors

2. Realize the different fabrication technology for semiconductor devices and integrated circuits

3. Explain charge transport in p-n junctions and metal-semiconductor contacts

4. Apply the principles of field effect (MOSFET) and bipolar junction (BJT) transistors

5. Apply the principles of light-emitting diodes (LED) and laser diodes (LD), photoconductors/photodiodes, and photovoltaic solar cells.

Textbook and references

الكتاب المقرر والمراجع المساندة:

Text Book: B.G. Streetman and Sanjay Banerjee: Solid State Electronic Devices, 6th edition (or later), Prentice Hall, 2006.

References:

Muller, Richard S., Theodore I. Kamins, and Mansun Chan. Device Electronics for Integrated Circuits. 3rd ed. New York, NY: John Wiley & Sons, 2002. ISBN: 9780471593980.

D.A. Neamen, "Semiconductor Physics and Devices", McGraw-Hill, 4th, 2011, Holger T. Grahn, "Introduction to Semiconductor Physics", World Scientific, 1st, 1999.

G. Parker, "Introductory Semiconductor Device Physics", Prentice Hall, 1994 Kanaan Kano, "Semiconductor Devices", Prentice Hall, 1998

Course number: ECE 241	Course name: Electronics (1)	
لغة تدريس المقرر : English	Pre-requisites: ECE 211	
Credit hours: 4 (3-2-0)	Course level: Level - 6	
Course Description	وصف المقرر:	

Course Description

Opamp Linear Applications. PN junction and zener diodes. Diode Models. Diode basic circuit analysis and diode applications (e.g. rectifier and limiters). MOSFET and BJT (Mode of operation, Terminal characteristics, DC biasing, small signal analysis). Amplifier configurations and characteristics. CMOS digital circuits.

Course objectives

أهداف المقرر:

- 1. Introduce the op-amps and its basic applications.
- 2. Present different types of diodes and its main applications.
- 3. Introduce different types of transistors, their modes of operations, and DC biasing techniques.
- 4. Apply knowledge of mathematical models to design single transistor amplifiers.
- 5. Be familiar with different digital families and get the required knowledge to design CMOS logic gates.

Course Outcomes

مخرجات التعليم:

Upon completing the course, the student should be able to:

- 1. Analyze and design different circuits using ideal op-amps.
- 2. Identify and characterize different semiconductor devices (P-N Junction, BJT, MOSFET, and JFET).
- 3. Understand different diode and transistor applications (clipping, clamping, amplifier, digital gates ...).
- 4. Analyze and design different electronic circuits contain semiconductor devices using devices' models.
- 5. Identify the design parameters and different characteristics of small signal amplifiers.
- 6. Understand different digital families and get the required knowledge to select the proper family for a certain application.
- 7. Use the techniques, skills, and modern engineering tools such as PSPICE to analysis and design electronic circuits.
- 8. Conduct electronics experiments including analysis and interpretation of measured results.

الكتاب المقرر والمراجع المساندة: **Textbook and references**

Text Book: Sedra and Smith, "Microelectronic Circuit," 7th Edition (or later), 2014, Oxford University Press, ISBN 9780199339136.

References:

Richard Jaeger, and Travis Blalock, Microelectronic Circuit Design, 5th Ed., McGraw Hill Education, 2016. SBN: 0073529605.

Mark N. Horenstein, Microelectronic Circuit and Devices (2nd Edition) (Part A & B), Pearson, 1994, ISBN 10: 0137013353 ISBN 13: 9780137013357

Brief Course Description

Course number: ECE 220	Course name: Electromagnetics
لغة تدريس المقرر : English	Pre-requisites: ECE 210, ECE 202
Credit hours: $4(3+2+0)$	Course level: Level 6- Third Year
Course Description	وصف المقرر:

Course Description

Course description:

Review of vector algebra and vector Calculus. Electrostatics: Coulomb's law, Gauss's law, electric potential, Poisson's and Laplace's equation, image method, resistance and capacitance. Magnetostatics: Biot-Savart law, Ampere's law, Magnetic forces, magnetic boundary conditions and inductance.

Course objectives

أهداف المقرر:

- \checkmark To introduce the basic concepts of electric charge and magnetism.
- \checkmark To explain the concepts of the electrostatic field, the potential difference, and Gauss law.
- \checkmark To allow students learn the principals of the static magnetism and its laws.
- \checkmark To link the electric circuits elements to electromagnetism.

Course Outcomes

فرجات التعليم:

Upon completing the course, the student should be able to:

- Use vector algebra and vector calculus in electromagnetism.
- Describe and explain the basic concepts of electricity and magnetism such as charge, potential and field.
- Understand Gauss' law, Ampere's Law, Biot-Savart law and their applications.
- Carry out experiments, analyze the obtained data and compare with theoretical results.

Textbook and references

الكتاب المقرر والمراجع المساندة:

Book	Authors	Publisher	Publication year
Elements of	M. Sadiku	Oxford	2015
Electromagnetics		University Press	
(textbook)			
Engineering	W.H. Hayt, and	McGraw-Hill	2007
Electromagnetics	J. A. Buck		
Fundamentals of	F. T. Ulaby and	Pearson	2015
Applied	U. Ravaioli		
Electromagnetics			

نموذج (هـ) –

	توصيف المقرر	مختصر	
	رقم المقرر ورمزه: ECE 203	Introduction to	اسم المقرر:
		Engineerin	ng Design
	لغة تدريس المقرر : English	بق: MATH 103T	المتطلب السا
	الساعات المعتمدة: (2-1-2)	ر: Year 3-Level 6	مستوى المقر
M	odule Description	•	وصف المقر

This course is a sophomore level design course that introduces the basic elements of engineering design with emphasis on teamwork and communication skills. It exposes students to engineering profession, jobs and disciplines. Topics include problem-solving procedure: from problem definition, needs identification, literature review, concept generation, generation of alternatives, selection methodology to solution implementation, and assessment of implementation. Reverse engineering and engineering code of ethics with impact of engineering solutions on society is also discussed. This course gives practice in open-ended problems, critical and lateral thinking, planning and scheduling through design project plus organization of the work and design documentation. It enables students to consider safety, legal, environmental and human factors, and other societal constraints in execution of their design projects.

Module Aims

أهداف المقرر:

The course aims to introduce the engineering design process, the tools and the techniques used for product development or services applied to many engineering disciplines like industrial, mechanical, electrical and computer. This course provides opportunities for students to develop oral and written communication skills and work effectively in teams. It gives students opportunity to practice elements of active learning and demonstrate skills in the engineering design process in completing a design project.

مخرجات التعليم: (الفهم والمعرفة والمهارات الذهنية والعملية)

يفترض بالطالبة بعد در استها لهذا المقرر أن تكون قادرة على:

Take personal responsibility for learning as of how	
to search and collect information and rearrange it	
for a given topic.	
Use skills in teamwork including team norms and	
use effective teams discussion tools such as team	
agenda, minutes and team process check	
Explain problem definition techniques and problem	
solving strategies	
Explain quality, customer expectations, and	
process	
Explain planning components such as Gantt chart,	
deployment chart and critical path	
Discuss ethical issues, safety considerations, and	
environmental, social and cultural impact	
pertaining to the project.	
Present technical work in an organized way using	
modern techniques such as book keeping (Design	
Notebook), using checklist, etc.	
Present professional behaviour in the areas of	

punctuality, time management, meeting deadlines, and professional appearance appropriate of engineering professionals	
Develop written and oral communication skills while networking with faculty and students.	

الكتاب المقرر والمراجع المساندة:

سنة النشر	اسم الناشر	اسم المؤلف	اسم الكتاب
2001	McGraw Hill	Arvid Eide, Roland Jenison Larry Northup, Lane Mashaw	Introduction To Engineering Design and Problem Solving
2007	Prentice Hall	Fogler, H.S., LeBlanc, S., E	Strategies for Creative Problem Solving
2013	Cengage	John R. Karsnitz, Stephen O'Brien , John P. Hutchinson	Engineering Design: An Introduction
2009	Great Lake Press	W.C. Oakes, L.L. Leone, and C.J. Gunn	Engineering Your Future: A Comprehensive Approach

Topics to be <u>covered</u>

List of topics	No. of Weeks
What engineering do? Engineering disciplines and their systems	1
Learning Culture	1
Introduction to Engineering Design Process and design team	2
Creative Problem Solving	2
Generation of alternative concepts, evaluation of alternatives and selection of a concept. Design defense and performance evaluation and design report	3
Engineering The Profession and Communication	2
Architecture and physical function decomposition; human factor, environment, and safety issues in design;	1
Autonomous Learner, time management and study skills	1
Engineering codes of ethics and impact of solution on society	1

الموضوعات التي سيتم تناولها:

Brief Course Description

Course number: ECE 270	Course name: Signals and Systems
لغة تدريس المقرر : English	Pre-requisites: ECE 210
Credit hours: $3(3+0+0)$	Course level: Level 6 - Third
	Year

Course Description

وصف المقرر:

Representation and properties of continuous time signals. Linear timeinvariant systems and convolution. Fourier series. Fourier transform and applications. Sampling theorem. Laplace transform. Transfer functions. Time domain analysis of discrete linear systems and z-transform. The discrete Fourier transform.

Course objectives

أهداف المقرر :

- ✓ To familiarize the students with the fundamental concepts of continuous and discrete signals and systems and their properties.
- ✓ To explain the notion of linear time-invariant systems and convolution.
- ✓ To explain the different transform-domain techniques and their applications
- ✓ To acquire skills to simulate and implement basic signal analysis.
 Course Outcomes

Upon completing the course, the student should be able to:

- Understand the characterization of both continuous- and discretetime signals and systems.
- Identify LTI systems and carry out convolution operation.
- Understand and manipulate the different transform-domain techniques and their applications.
- Simulate signals and systems using Software tools such as Matlab.

Textbook and references

الكتاب المقرر والمراجع المساندة:

Book	Authors	Publisher	Publication year
Signals, Systems and	Charles L. Phillips, John	Pearson	2014
Transforms (textbook)	M. Parr, Eve A. Riskin		
Signals and systems	Alan V. Oppenheim, Alan	Prentice-	1997
	S. Willsky, with. S.	Hall	
	Hamid		
Signals and Systems:	Rodger E. Ziemer,	Pearson	1998
Continuous and Discrete	William H Tranter, D. R.		
	Fannin		
Signals and Systems	Luis F. Chaparro	Academic	2010
Using MATLAB		Press	

له)	(۵	نموذج
- (-	· /	

Course Description Summary

Course number: ECE 371	Course name: Communications Systems	
لغة تدريس المقرر : English	Pre-requisites: ECE 270	
Credit hours: $4(3+2+0)$	Course level: Seventh Level- Fourth Year	

Course Description

Review of Fourier series and Fourier transform Amplitude modulation. Phase and frequency modulation. Sampling and quantization, Pulse code modulation, Line coding and spectra, Signaling over band-limited channels and inter-symbol interference, Digital modulation schemes. Introduction to current and emerging communication systems

Course objectives

أهداف المقرر:

وصف المقرر:

- \checkmark To introduce basic communication systems and their signal flow diagrams.
- ✓ To enable describing AM and FM modulation schemes in both time and frequency domains and design basic AM and FM systems.
- \checkmark To enable grasping the analog-to-digital conversion and line coding.
- \checkmark To introduce digital modulation schemes and their applications.

Course Outcomes

خرجات التعليم:

Upon completing the course, the student should be able to:

- Derive and describe the frequency spectrum of different types of radio signals.
- Identify, analyze, compare, and implement amplitude and frequency modulation schemes.
- Understand sampling and analog to digital conversion.
- Identify and implement basic digital modulation schemes.

Textbook and references

الكتاب المقرر والمراجع المساندة:

Book	Authors	Publisher	Publication year
Modern Digital and Analog Communication Systems (textbook)	Lathi B. P.	Oxford University Press	2018 5th Edition
Digital and Analog Communication Systems	Couch L. W.	Prentice- Hall	2013
Communication Systems Engineering	Proakis J. G. and Salehi M.	Prentice- Hall	2002
Digital Communications: Fundamentals and Applications	Sklar B.	Prentice-Hall	2009

Course number: ECE 330	Course name: Control Systems
لغة تدريس المقرر : English	Pre-requisites: ECE 270
Credit hours: $3(3+0+0)$	Course level: Level 7 - Fourth Year

Course Description

Introduction to control systems. Representation of physical control system elements. Transfer functions, Signal flow graphs. State space analysis. Sensitivity, static accuracy and transient response. Stability of control systems : Routh criterion, Root locus, Frequency response methods, Nyquist stability criterion. Compensation techniques. Introduction to digital control and the Z transform. Discrete time control system.

Course objectives

أهداف المقرر:

وصف المقرر

Students will be able to:

- Develop mathematical models for linear dynamic systems in continuous and discrete time
- Use time domain and frequency domain tools to analyze and predict the behavior of linear systems.
- Use time domain and frequency domain techniques to design feedback compensators to achieve a specified performance criterion.
- Use MATLAB for system analysis and design.

Course Outcomes

مخرجات التعليم:

On successful completion of this course, the students will have developed

- knowledge and understanding of
 - i) essence of using feedback and structure of feedback systems
 - ii) basic principles of control system analysis in the time-domain
 - iii) basic principles of control system analysis in the frequency-domain
- their skills in:
 - i) evaluating transient and steady-state responses of control systems
 - ii) designing basic controllers
- their appreciation of and respect for values and attitudes regarding the issues of:
 i) feedback
 - ii) reliability and economy in control system design

الكتاب المقرر والمراجع المساندة: Textbook and references

Book	Authors	Publisher	Publication
			year
Modern Control Systems, 13 th	Richard C. Dorf and Robert H.	Pearson	2017
edition.	Bishop		
Automatic Control	FARID GOLNARAGHI,	JOHN	2010
Systems, 9 th edition	BENJAMIN C. KUO	WILEY &	
		SONS, INC.	
Feedback Control of Dynamic	Gene F. Franklin J. David Powell,	Pearson	2019
Systems 8th Edition	Abbas Emami-Naeini		

Course number: ECE 342	Course name: Electronics (2)	
لغة تدريس المقرر: English	Pre-requisites: ECE 241	
Credit hours: 4 (3-2-0)	Course level: Level - 7	
Course Description	وصف المقرر :	
Differential amplifiers. Multistage amplifie single stage, multistage and opamp). Feedb Active filters single and multi-opamp topol and pole locations, Opamp based Sinusoida Sinusoidal Oscillators. Introduction to A/D	rs. Amplifier frequency response (for ack: Circuit topologies and analysis. ogies, inductance simulation. Stability al Oscillators, transistors based and D/A.	
Course objectives	أهداف المقرر :	
1. Consider the operations and character MOSEET	istics of differential amplifier BJT and	
2 Study frequency response of amplifiers		
 Study frequency response of amplifiers Presents several useful multistage ampli 	ifiers.	
4. Introduce the main electronics circuit	building blocks: amplifiers, filters and	
oscillators.		
5. Apply advanced analysis methodologie	es: pole-zero calculations, s-domain, and	
feedback.		
6. Provide basics of data convertors.		
Course Outcomes	مخرجات التعليم:	
Upon completing the course, the student sh	ould be able to:	
1. Apply knowledge of mathematics, scient	ence, and engineering to the analysis of	
electronic circuits (Amplifiers Active F	ilters, and Oscillators).	
2. Use the techniques, skills, and moder	n engineering tools such as PSPICE to	
analysis and design electronic circuits.		
3. Apply knowledge of mathematics, sci	ence, and engineering to the design of	
electronic circuits (such as Amplifiers,	Active Filters, and Oscillators).	
4. Identify, formulates, and solves electron	nic engineering problems.	
5. Design a electronic components or process to meet desired needs within		
realistic constraints such as economic, environmental, social political, ethical,		
health and safety, manufacturability and	l sustainability.	
6 Use the techniques skills and moder		
0. Use the techniques, skins, and model	n engineering tools such as PSPICE to	
analysis and design electronic circuits.	n engineering tools such as PSPICE to	

Text Book: Sedra and Smith, "Microelectronic Circuit," 7th Edition (or later), 2014, Oxford University Press, ISBN 9780199339136.

References:

Richard Jaeger, and Travis Blalock, Microelectronic Circuit Design, 5th Ed., McGraw Hill Education, 2016. SBN: 0073529605.

Mark N. Horenstein, Microelectronic Circuit and Devices (2nd Edition) (Part A & B), Pearson, 1994, ISBN 10: 0137013353 ISBN 13: 9780137013357.

Course number: ECE 343	Course name: Introduction to Digital VLSI	
لغة تدريس المقرر: English	Pre-requisites: ECE 241	
Credit hours: 4 (3-2-0)	Course level: Level - 7	

Course Description

وصف المقرر:

Theory and practice of very-large-scale integration (VLSI) circuit design. Metaloxide-semiconductor (MOS) transistors; static and dynamic complementary metaloxide-semiconductor (CMOS) combinational and sequential circuits; design of adders, multipliers, and shifters; performance, power consumption and testing. CAD tools for layout, timing analysis, synthesis, physical design, and verification.

Course objectives

أهداف المقرر:

- 1. Have an understanding of the characteristics of CMOS circuit construction.
- 2. Introduce the concepts and techniques of modern integrated circuit design and testing (CMOS VLSI).
- 3. Provide experience designing integrated circuits using Computer Aided Design (CAD) Tools.

Course Outcomes

مخرجات التعليم:

Upon completing the course, the student should be able to:

- 1. Create models of moderately sized CMOS circuits that realize specified digital functions.
- 2. Apply CMOS technology-specific layout rules in the placement and routing of transistors and interconnect, and to verify the functionality, timing, power, and parasitic effects.
- 3. Compare between different state-of-the-art CMOS technologies and processes.
- 4. To give the student an understanding of the different design steps required to carry out a complete digital VLSI (Very-Large-Scale Integration) design in silicon.
- 5. Design functional units including adders, multipliers, ROMs, SRAMs, and PLAs

Textbook and references

الكتاب المقرر والمراجع المساندة:

Textbook: N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective (4th Edition), 2010. AddisonWesley.

References: Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic, Digital Integrated Circuits: A Design Perspective, 2nd Edition, Prentice Hall, ISBN: 0-13-090996-3, 2003. • S.M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and Design (3rd edition), McGraw Hill, ISBN 0-07-246053-9, 2003.

Course number: ECE 344	Course name: Introduction to	
	Nanoelectronics	
لغة تدريس المقرر: English	Pre-requisites: ECE 242	
Credit hours: 3 (3-0-0)	Course level: Level - 8	

Course Description

وصف المقرر:

Theory of current, voltage and resistance from atoms up. Electrons at the nanoscale. Principles of quantum mechanics, including quantization, the wave-particle duality, wavefunctions and Schrödinger's equation. Electronic properties of molecules, carbon nanotubes and crystals, including energy band formation and the origin of metals, insulators and semiconductors. Electron conduction. Ballistic transport. Derivation of Ohm's law. Ballistic vs bulk MOSFETs.

Course objectives

أهداف المقرر:

- 1. Understand the basic principles that govern the operation and electrical characteristics of nanoelectronic devices.
- 2. Become familiar with the recent research being undertaken in nanoelectronics.
- **3.** Examine the basic ideas and concepts required to understand current flow in nanodevices.

Course Outcomes

مخرجات التعليم:

Upon completing the course, the student should be able to:

- 4. Clearly explain distinct phenomena that are important in nanoelectronic devices.
- 5. Describe the operating principles, merits, demerits and challenges of some of the futuristic nanoelectronic devices.
- 6. Compute a given parameter or physical quantity for a nanoelectronic device by applying appropriate equations or formula.
- 7. Describe the challenges of scaling of conventional MOSFETs and possible solutions.
- 8. Calculate information regarding the energy levels of structures used in nanodevices.

Textbook and references

الكتاب المقرر والمراجع المساندة:

Text Book: Vladimir V. Mitin, Viatcheslav A. Kochelap and Michael A. Stroscio Frontmatter, Introduction to Nanoelectronics: Science, Nanotechnology, Engineering, and Applications, Cambridge textbooks, March 2012, isbn: 9781107403765

References:

M. Lundstrom and J. Guo, Nanoscale Transistors: Physics, Modeling, and Simulation, Springer 2006.

S. Datta, Quantum Transport: Atom to Transistor. Cambridge University Press 2005

Y. Tsividis, The MOS Transistor. Oxford University Press, 2nd edition 1999

R. Feynman, Lectures on Computation. Editors A.J.G. Hey and R.W. Allen, Addison-Wesley 1996.

Summarized Course Description

Course number: ECE 350	Course name: Optical Electronics	
لغة تدريس المقرر: English	Pre-requisites: ECE 240,ECE 241	
Credit hours: 4 (3-2-0)	Course level: Level - 8	

Course Description

وصف المقرر:

Fundamentals of optical signals and modern optical devices and systems. Photovoltaic solar cells. Optical systems sources (e.g., lasers and light-emitting diodes), light modulation components (e.g., liquid-crystal light modulators), transmission media (e.g., free space or fibers), photodetectors (e.g., photodiodes, photomultiplier tubes), information storage devices (e.g., optical disk), processing systems (e.g., imaging and spatial filtering systems) and displays (LCOS microdisplays).

Course objectives

أهداف المقرر:

- 1. Introduce the student to the generation, propagation, and detection of optical electromagnetic waves.
- 2. Gain a fundamental understanding of the basic physics and technology of quantum electronics devices and laser systems.

Course Outcomes

مخرجات التعليم:

Upon completing the course, the student should be able to:

- 1. Predict optical output intensity and efficiency of a continuous wave laser.
- 2. Explain the differences and similarities between lasers based on transitions between discrete atomic or molecular levels, and semiconductor lasers. 27.
- 3. Explain the principles of gain and absorption in highly doped homojunction laser diodes operating with high-levels of injection current.
- 4. Use the concepts of densities of states, quasi-Fermi levels, Fermi distributions and simple semiconductor energy band theory to compute gain vs frequency as a function of injection current in a homojunction laser.
- 5. Design a simple diode laser having given performance specifications.

Textbook and references

الكتاب المقرر والمراجع المساندة:

Text Book: J. T. VERDEYEN, LASER ELECTRONICS, 3RD ED., PRENTICE-HALL.

REFERENCES

Saleh, B., and M. Teich. *Fundamentals of Photonics*. New York, NY: Wiley, 1991. ISBN:

0471839655.

R. Feynman, Lectures on Computation. Editors A.J.G. Hey and R.W. Allen, Addison-Wesley 1996

Summarized Course Description

Course number: ECE 331	Course name: Energy System
لغة تدريس المقرر: English	Pre-requisites: ECE 211
Credit hours: $3(3+0+0)$	Course level: Level 8 - Year 4

Course Description

conventional and renewable energy sources and their environmental consequences; overview of power systems structure-generation, transmission, and distribution- and its changing landscape; review of phasors and three-phase electric circuits; fundamental principles in magnetic theory; principle and structure of transformers; principles of electromechanical energy conversion; theory and operation of induction machines; synchronous generators and motors; theory and operation of dc motor.

Course objectives

أهداف المقرر :

وصف المقرر:

- understand basic concepts of electrical machines and transmission lines
- will learn how to start and operate an electrical machine;
- learn the details of construction of different types of electrical machines;
- learn how to analyze the performance and design the components
- learn how to perform experimentation with electrical machines

Course Outcomes

مخرجات التعليم:

Upon completing the course, the student should be able to:

- 1. Understand of the power systems and its changing landscape.
- 2. Know the sources of energy and the environmental consequences.
- 3. review the fundamental principals in magnetic theory that are essential in learning about power system apparatus.
- 4. Learn about transformers and the role they play in power systems.
- 5. Learn about AC machines and the role they play in power systems.
- 6. Understand the principles and application of DC motors.

الكتاب المقرر والمراجع المساندة: Textbook and references

Book	Authors	Publisher	Publication
			year
Principles of Electric Machines and Power Electronics	P.C. Sen,	John Wiley	2016
Electric Machines & drives	Ned Mohan	John Wiley	2012
Fundamentals of Electric Machinery	Chapman	McGraw Hill	2012

Summarized Course Description

Course number: ISE 305	Course name: Engineering Economy
لغة تدريس المقرر: English	Pre-requisites:
Credit hours: $3(3+0+0)$	Course level: Level 8 - Year 4

Course Description

Introduction to concepts of economic decision-making from a cash flow viewpoint. It includes present worth analysis, cash flow equivalence, rates of return, replacement analysis, benefit-cost analysis, depreciation and taxes, and projects break-even point, selection, and sensitivity analysis.

Course objectives

أهداف المقرر:

وصف المقرر:

- Develop students' awareness of the concepts of cash flow approach, time value of money, product/project costing and rate of return.
- Introduce students to the process of integrating engineering proposals with economic analysis in order to select among several viable alternative projects.
- Understand and appreciate the models and measures used in decision making in the area of engineering economics.

Course Outcomes

مخرجات التعليم:

Upon completing the course, the student should be able to:

- 1. Evaluate the economic feasibility of investments related to engineering projects.
- 2. Assess the impact of depreciation, taxation and other economic factors on projects' feasibility.
- 3. Conduct sensitivity analysis on key compounding parameters.
- 4. Develop policies for assets replacement.
- 5. Assess alternative financing modes.
- 6. Make financially prudent decisions in everyday life (car/home loans or investments).

Textbook and references

الكتاب المقرر والمراجع المساندة:

Book	Authors	Publisher	Publication
			year
Fundamentals of Engineering Economics, 3rd Ed.	Park, Chan S.	Prentice Hall	2013
Engineering Economy and the Decision-making Process	Joseph C. Hartman	Pearson/Prentice Hall	2007
Engineering Economy	Leland Blank and Anthony Tarquin	McGraw-Hill	2012

Weekly breakdown of course topics

Week	Торіс	
1-4	Engineering economic decisions	
	Cash Flows, Time Value of money & money management	
5-6	Present and Future worth, annual equivalence analysis and	Payback
	Period	
7-8	Rate of return analysis	
9	Bond Problems	
10-11	Comparison of alternatives & replacement decisions	
12-13	Depreciation	
14	Corporate income tax	
	Inflation and its impact on project cash flows	
15	Economic analysis in the public sector (Benefit-Cost Analysis)	
	Project break-even and sensitivity analysis	

Summarized Course Description

Course number: ECE 390	Course name: Summer Training	
لغة تدريس المقرر: English	Pre-requisites: The student must pass at	
	least 125 credits	
Credit hours: 1	Course level:	

Course Description

A continuous period of 8 weeks of summer training spent in the industry working in any of the fields of electrical engineering. The training should be carried out in an organization with an interest in one or more of these fields. On completion of the program, the student is required to submit a formal written report of his work.

Course objectives

أهداف المقرر:

وصف المقرر:

- Enable the students to link theory and practice and to gain valuable practical/field experience.
- Provide guidance for future career opportunities.
- Familiarize the students with the work environment after graduation.
- Develop the student's work ethics.
- Develop the student's communication skills.
- Develop the ME student's teamwork skills.
- Enhance the relationship between the Electrical Engineering Department and industry.

Course Outcomes

مخرجات التعليم:

Upon completing the course, the student should be able to:

- 1. Understand the company organization, services, products and goals.
- 2. Understand the role of their departments and the contribution of their groups to the company's operation.
- 3. Identify, formulate, and solve engineering problems.
- 4. Practice the use of technology tools in designing and implementing electrical systems on practice.
- 5. Deliver and present their work experience and any projects effectively through written and oral communication.
- 6. Recognize the importance of self learning and development.
- 7. Follow work regulations.

Textbook and references

الكتاب المقرر والمراجع المساندة:

Book	Authors	Publisher	Publication year

Summarized Course Description

Course number: ECE 449	Course name: Microelectromechanical
	Devices
لغة تدريس المقرر: English	Pre-requisites: ECE 344
Credit hours: 3 (3-0-0)	Course level: Level -9 or 10
Course Description	وصف المقرر :

Course Description

Introduction to microsystem design, material properties, microfabrication technologies, structural behavior, sensing methods, fluid flow, microscale transport, noise, and amplifiers feedback systems. Design of microsystems (sensors, actuators, and sensing/control systems) of a variety of types, (e.g., optical MEMS, bioMEMS, inertial sensors) (e.g., sensitivity, signal-to-noise) using a realistic microfabrication process. Modeling and simulation in the design process. Design and Fabrication of practical MEMS examples.

Course objectives

أهداف المقرر:

حات التعليم:

1. Explore the world of microelectromechanical devices and systems ("MEMS").

2. Provide fundamental of related material properties, fabrication technologies,

3. Presents basic structural mechanics, sensing and actuation principles, circuit and system issues, packaging, calibration, and testing.

Course Outcomes

On successful completion this course, the student should be able to:

- Identify the relative importance of different physical phenomena based on length scale 1.
- 2. Identify and describe the most commonly used fabrication processes in making MEMS devices
- For a simple MEMS device, identify the major required fabrication steps and put them in the appropriate 3 order (create a process flow)
- Use the principles of elastic theory in predicting the stress/strain state of MEMS devices 4.
- List a number of common MEMS transducers and explain their operating principles 5
- Explain in detail the operating principles of a piezoresistive MEMS pressure sensor, and predict the 6. performance of such a device
- 7. Give a well-formed argument considering a microtechnology-based solution for a given problem.
- Gain experience using English in spoken and written forms as a means of expressing technical ideas 8.
- Visualize structures created with microfabrication process sequences, creation of low-order dynamical 9 device models.
- 10. Insert of learned models into the simulation of a complete electronic measurement circuit.

Textbook and references

الكتاب المقرر والمراجع المساندة:

Text Book: Senturia, Stephen D. Microsystem Design. New York, NY: Springer, 2004. ISBN: 9780792372462.

References:

Kovacs, Gregory T. A. Micromachined Transducers Sourcebook. New York, NY: McGraw-Hill, 1998. ISBN: 9780072907223.

Maluf, Nadim. An Introduction to Microelectromechanical Systems Engineering. Boston, MA: Artech House, 1999. ISBN: 9780890065815.

Nathan, Arokia, and Henry Baltes. Microtransducer CAD: Physical and Computational Aspects. New York, NY: Springer, 1999. ISBN: 9783211831038

Summarized Course Description

Course number: ECE 445	Course name: Analog Integrated Circuits
لغة تدريس المقرر : English	Pre-requisites: ECE 341
Credit hours: 3 (3-0-0)	Course level: Level -9 or 10

Course Description

Practice of integrated circuit design. Discrete vs Integrated circuits. Classes of chip design, chip partitioning, and architecture; Mixed mode integrated circuit devices and concepts. Advanced modeling and 2nd order effects of transistors and single stage amplifiers. Current mirrors and sources. Voltage and current references. Design of transconductance amplifier. Design of input stages, differential pairs, active loads, gain stages and level shifting. Output stages, power dissipation. Analysis and design of typical opamp circuits.

Course objectives

1. Analysis, design, and applications of modern analog circuits using integrated field effect transistor technologies.

2. Introduce the principles of analog circuits and apply the techniques for the design of analog integrated circuit (Analog IC's).

Course Outcomes

On successful completion this course, the student should be able to:

- 1. Describe the models for active devices in MOS and Bipolar IC technologies,
- 2. Describe layout considerations for active and passive devices in analog ICs,
- 3. Analyze and design single-ended and differential IC amplifiers,
- 4. Analyze and design IC current sources and voltage references,
- 5. Describe the noise sources and models applicable to ICs,
- 6. Analyze integrated circuit noise performance,
- 7. Analyze and design IC operational amplifiers,
- 8. Describe the operation of commonly used data conversion circuits, and
- 9. Design, simulate, lay out, and verify analog integrated circuit designs using a commercial CAD environment.

Textbook and references :3

الكتاب المقرر والمراجع المساندة:

Text Book:

Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2016 2nd addition, ISBN 9780072524932

References:

P. Gray, P. Hurst, S. Lewis, R. Meyer, Analysis and Design of Analog Integrated Circuits by (More BJT) Wiley, 2009 5th addition.

Willy Sansen, Analog Design Essentials, Springer, 2006 1st addition. Boylestad and Nashelsky, Electronic Devices and Circuit Theory, Pearson Highered 2012 11th addition.

وصف المقرر:

خرجات التعليم:

أهداف المقرر:

Course number: ECE 446	Course name: Industrial Electronics
لغة تدريس المقرر: English	Pre-requisites: ECE 341
Credit hours: 4 (3-2-0)	Course level: Level -9 or 10
Course Description	وصف المقرر:

Course Description

Introduction to measurements systems and basic definitions. Sensors (temperature, humidity, light, piezoelectric, hall effect, pressure, flow and strain gauges) and, signal conditioning circuits (bridge, instrumentation amplifier, scaling circuits, comparators, A/D and D/A, 555 timer). Remote control. Ultrasound systems. Measurements techniques (temperature and humidity measurements, level and displacement measurement, pressure and flow measurement). Introduction to foundation field bus, 555 timers. Power switches (power transistors, SCR, Triac, UJT, PUT). Structure and application in power control. Instrumentation amplifier. Opto electronic sensors. LCD and 7 segment interface. Ultrasonic transistors and applications. Voltage regulators (series, shunt, 3 terminals, switched mode). Power inverter and its applications. Introduction to microcontroller industrial applications.

Course objectives

- أهداف المقرر:
- 1. Introduce the principles of measurement and sensing.
- 2. Presents different types of conditioning circuits needed in industrial applications.
- 3. Introduce power electronics components.
- 4. Design of industrial applications using commercially available components.

Course Outcomes

خرجات التعليم:

On successful completion this course, the student should be able to:

- Use the 555 Timer and its applications. 1.
- Utilize Power semiconductor devices, Thyristors (SCR, Diacs, Triacs, UJT). 2.
- 3. Be familiar with some examples of industrial electronic circuits
- 4. Use sensors (Temperature sensors, Pressure sensors, etc.)
- 5. Design Instrumentation Amplifier, Comparators, Schimit Trigger.
- 6. Be familiar with Opto electronic sensors.
- 7. Design LCD and 7 segment interface.
- 8. Utilize ultrasonic transistors in related applications.
- 9. Design voltage regulators (series, shunt, 3 terminals, switched mode).
- 10. Understgand the operation of power inverter and its applications.
- 11. Be familiar with microcontroller industrial applications.

Textbook and references

الكتاب المقرر والمراجع المساندة:

Text Book:

Timothy J. Maloney, Modern Industrial Electronics, Prentice Hall, 2004 5th edition. ISBN 13: 9780130156761, ISBN 10: 0130156760.

References:

Muhammad H. Rashid, Power Electronics: Circuits, Devices & Applications, Prentice Hall, 2014 4th edition, ISBN 978-0133125900.

J. Rehg, and G. Sartori, Industrial Electronics, Prentice Hall, 2006 1st edition.

Colin D. Simpson, Industrial Electronics, 1st edition, ISBN-13: 978-0024106223, ISBN-10: 0024106224

Summarized Course Description

Course number: ECE 447	Course name: Digital Integrated Circuits
لغة تدريس المقرر : English	Pre-requisites: ECE 343
Credit hours: 3 (3-0-0)	Course level: Level -9 or 10

Course Description

وصف المقرر:

أهداف المقرر:

MOS device models including Deep Sub-Micron effects; circuit design styles for logic, arithmetic and sequential blocks; estimation and minimization of energy consumption; interconnect models and parasitics; device sizing and logical effort; timing issues (clock skew and jitter) and active clock distribution techniques; memory architectures, testing of integrated circuits. Circuit layout and CAD tools.

Course objectives

1. Introduce the basics of digital integrated circuits design.

2. Exercise the different issues related to the development of digital integrated circuits including fabrication, circuit design, implementation methodologies, testing, design methodologies and tools and future trends.

Course Outcomes

مخرجات التعليم:

On successful completion this course, the student should be able to:

- 1. Understand CMOS circuits and systems that are suitable for CMOS fabrication.
- 2. Apply the models for state-of-the-art VLSI components, fabrication steps, hierarchical design flow.
- 3. Design simulated experiments using CAD verify the integrity of a CMOS circuit and its layout.
- 4. Practice the design aspects involved in the realization of CMOS integrated circuits/systems from device up to the subsystem level.

Textbook and references	المساندة:	مراجع	والد	المقرر	الكتاب
-------------------------	-----------	-------	------	--------	--------

Text Book: Sung-Mo (Steve) Kang, Yusuf Leblebici, and Chul Woo Kim. CMOS Digital Integrated Circuits Analysis & Design, 4th edition, McGraw Hill, 2014

Reference Text: Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital Integrated Circuits, A Design Perspective, 2nd edition, Prentice Hall, 2003. ISBN: 0130909963

Palnitkar, Samir. *Verilog HDL: A Guide to Digital Design and Synthesis*. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2003. ISBN: 0130449113.

Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic, Digital Integrated Circuits: A Design Perspective, 2nd Edition, Prentice Hall, ISBN: 0-13-090996-3, 2003.

ذج (هـ)	نمو
---------	-----

Course number: ECE 448	Course name: Nanotechnology
لغة تدريس المقرر : English	Pre-requisites: ECE 344
Credit hours: 4 (3-2-0)	Course level: Level – 9 or 10

Course Description

وصف المقرر:

Techniques and applications of nanofabrication and miniaturization of devices to the smallest scale. The technology of miniaturization, its fundamentals and present trends towards building devices and structures on the nanometer scale. Examples of applications of nanotechnology in the electronics, communications, data storage and sensing world will be described, and the underlying physics as well as limitations of the present technology will be discussed.

Course objectives

أهداف المقرر:

- 1. Learn some of the basics of nanofabrication and nanocharacterization techniques as well as specific applications of nanotechnology in commercial products.
- 2. Understand fundamental physical scaling laws applied to understanding the properties of materials at the nanometer scale.
- 3. Introduce self assembly, surfaces and interfaces in nanotechnology.

Course Outcomes

مخرجات التعليم:

On successful completion this course, the student should be able to:

- 1. Describe the basic science behind the properties of materials at the nanometer scale.
- 2. Familiar with the principles behind advanced experimental and computational techniques for studying nanomaterials.
- 3. Communicate clearly, precisely and effectively using nanotechnology scientific language and mathematical notation.
- 4. Systematically solve scientific problems related specifically to Nano technological materials using conventional scientific and mathematical notation.
- 5. Identify computational characterization of nanomaterials.

Textbook and references

الكتاب المقرر والمراجع المساندة:

Text Book: John C. Morrison, Modern Physics for Scientists and Engineers, Elsevier, 2nd Edition, 2015, ISBN 978-0-12-800734-1.

References:

⁻ Solid State Electronic Devices; B. G. Streetman, S. Banerjee; Prentice-Hall, 5th ed.

^{- &}lt;u>Physics of Semiconductor Devices</u>; Jean-Pierre Colinge, Springer 2002.

Summarized Course Description

Course number: ECE 451	Course name: Solar cells
لغة تدريس المقرر : English	Pre-requisites: ECE 350
Credit hours: 4 (3-2-0)	Course level: Level – 9 or 10
Course Description	وصف المقرر :

Course Description

Advanced semiconductor devices as a new source of energy for the 21st century. Delivering electricity directly from sunlight. The suitable semiconductor materials. Device physics. Fabrication technologies for solar cells. The cost aspects, market development. Application areas of solar cells. Application of design of a complete solar cell system for household application.

Course objectives

أهداف المقرر:

- 1. Learn about the principles of the photovoltaic conversion.
- 2. Explain the advantages and limitations of different solar cell technologies, such as crystalline silicon solar cell technology and thin film solar cell technologies.
- 3. Present an understanding of the specifications of solar modules and know how to design a complete solar system for a particular application.

فرجات التعليم:

On successful completion this course, the student should be able to:

1. Explain the principles that underlie the ability of various natural phenomena to deliver solar energy

2. Outline the technologies that are used to harness the power of solar energy

3. Discuss the positive and negative aspects of solar energy in relation to natural and human aspects of the environment.

4. Acquainted with solar cell foundimentals: why we need solar energy, how solar cells produce power, and how they work.

5. Be familiar mono- and multi-crystalline solar cells, thin film solar cells, and new emerging technologies.

الكتاب المقرر والمراجع المساندة: **Textbook and references**

Text Book: Wenham, S. R., M. A. Green, M. E. Watt, R. Corkish. Applied Photovoltaics. 2nd .ed. New York, NY: Earthscan Publications Ltd., 2007. ISBN: 9781844074013.

References:

Poortmans, J., and V. Arkhipov. Thin Film Solar Cells: Fabrication, Characterization and Applications. Hoboken, NJ: John Wiley & Sons, 2006. ISBN: 9780470091265.

Green, M. A. Third Generation Photovoltaics: Advanced Solar Energy Conversion. New York, NY: Springer-Verlag, 2007. ISBN: 9783540265627.

Ruud E. I. Schropp, Miro Zeman, Amorphous and microcrystalline silicon solar cells: modeling, materials, and device technology, Volume 5 of Electronic Materials Series, Publisher: Springer, 1998, ISBN 9780792383178

Online book: Honsberg, C., and S. Bowden. Photovoltaics: Devices, Systems and Applications

Summarized Course Description

Course number: ECE 452	Course name: Fundamentals of Photovoltaics
لغة تدريس المقرر : English	Pre-requisites: ECE 350
Credit hours: 3 (3-0-0)	Course level: Level -9 or 10

Course Description

وصف المقرر:

Fundamentals of photoelectric conversion: charge excitation, conduction, separation, and collection. Lectures cover commercial and emerging photovoltaic technologies and cross-cutting themes, including conversion efficiencies, loss mechanisms, characterization, manufacturing, systems, reliability, life-cycle analysis, risk analysis, and technology evolution in the context of markets, policies, society, and environment.

Course objectives

أهداف المقرر:

- 1. Show how solar cells are manufactured.
- 2. Introduce how solar cells are evaluated, what technologies are currently on the market.
- 3. Discuss the risk and potential of existing and emerging solar cell technologies.

Course Outcomes

مخرجات التعليم:

On successful completion this course, the student should be able to:

- Explain how solar cells convert light into electricity.
 Examine the potential and drawbacks of currently manufactured technologies (single- and multi-crystalline silicon, micromorph tandem cells, CdTe, CIGS, CPV, PVT).
 Examine pre-commercial technologies (organics, biomimetic, organic/inorganic hybrid, and nanostructure-based solar cells).
 Apply Hands-on laboratory to explore how a solar cell works in practice.
 Scrutinize what limits solar cell performance and cost, and the major hurdles technological, economic, and political towards widespread substitution of fossil fuels.
- 6. Apply acquired knowledge towards developing and critiquing a solar energy technology prospectus.

Textbook and references	الكتاب المقرر والمراجع المساندة:

Text Book: Wenham, S. R., M. A. Green, M. E. Watt, R. Corkish. Applied Photovoltaics. 2nd .ed. New York, NY: Earthscan Publications Ltd., 2007. ISBN: 9781844074013.

References:

Poortmans, J., and V. Arkhipov. Thin Film Solar Cells: Fabrication, Characterization and Applications. Hoboken, NJ: John Wiley & Sons, 2006. ISBN: 9780470091265.

Green, M. A. Third Generation Photovoltaics: Advanced Solar Energy Conversion. New York, NY: Springer-Verlag, 2007. ISBN: 9783540265627.

Luque, A., and S. Hegedus. Handbook of Photovoltaic Science and Engineering. Hoboken, NJ: John Wiley & Sons, 2003. ISBN: 9780471491965.

Deutsche Gesellschaft für Sonnenenergie, *Planning and installing photovoltaic systems: a guide for installers, architects and engineers*, Edition 2, Publisher: Earthscan, 2008, ISBN 9781844074426

(🎝)	نموذج
	Ċ J

Course number: ECE 461	Course name: Digital System Design
لغة تدريس المقرر : English	Pre-requisites: ECE 343
Credit hours: 3 (3-0-0)	Course level: Level – 9 or 10

Course Description

وصف المقرر:

Design of systems using PLDs and ASICs (in particular, gate arrays and standard cells). Design and implementation details of various systems and logic device technologies. Practical aspects of ASIC design, such as timing, testing, and fault grading. Topics include synchronous design, state machine design, ALU and CPU design, application-specific parallel computer design, design for testability, PALs, FPGAs, VHDL, standard cells, timing analysis, fault vectors, and fault grading.

Course objectives

أهداف المقرر:

1. Introduce the concepts and design techniques of Very Large Scale Integration systems through a study of Application Specific Integrated Circuits (ASICs) with particular emphasis on Field Programmable Gate Arrays (FPGAs).

2. Discuss fully custom, standard cell, gate array and programmable ASICs and the influence of total cost on choice of ASIC type.

3. Explore Programmable Logic Devices (PLDs), Field Programmable Gate Arrays (FPGAs). Programming technology. CMOS logic cells. Coarse-grained vs finegrained architectures. Routing and Timing. I/O cells. Embedded microprocessors.

4. Introduce ASIC Design Software, design flows and design entry methods: Schematic Entry, Hardware Description Languages (HDLs): VHDL.

5. Discuss behavioural and structural models. Event-driven simulation. Logic Synthesis: limitations of HDL based logic synthesis.

Course Outcomes

مخرجات التعليم:

On successful completion this course, the student should be able to:

1. Know about the different types of ASIC available and their suitability for different applications.

2. Understand the principles of Programmable ASIC technology.

3. Understand the principles of ASIC design.

4. Describe architecture of FPGAs and their logic and I/O cells. Shows knowledge of timing limitations.

5. Demonstrate understanding of the basic physics of CMOS logic cells. Can build simple logic functions from standard cells.

6. Describe Register Transfer Level (RTL) design: datapath, High Level State Machines (HSM), operator binding, operator scheduling, area-time trade-offs.

7. Perform timing analysis of simple circuits, using reasonable approximations

based on underlying physics.

8. Explain the need for behavioural and structural models for the same circuit. Can perform "dry runs" of VHDL simulations. Can devise simple RTL designs.

9. Describe the limitations and pitfalls of HDL-based logic synthesis and design. Can perform "dry runs" of VHDL simulations showing correct use of Delta Time. Can evaluate alternative RTL designs.

اندة: Textbook and references	ع المسا	المراجع	المقرر و	الكتاب

Text Book: N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective (4th Edition), 2010. Addison Wesley.

Reference Textbooks:

S.M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and Design (3rd edition), McGraw Hill, ISBN 0-07-246053-9, 2003.

Smith, Douglas. *HDL Chip Design*. Madison, AL: Doone Publishing, 2001. ISBN: 0965193438.

A great book for the intermediate Verilog designer. Clearly outlines the relationship between Verilog models and the corresponding synthesized circuit.

Smith, Michael. *Application-Specific Integrated Circuits*. Reading, MA: Addison Wesley, 1997. ISBN: 0201500221.

A useful reference on many of the lower-level details about synthesis, place and route, and FPGA mapping.

Sweetman, Dominic. *See MIPS Run*. San Francisco, CA: Morgan Kaufman, 1999. ISBN: 1558604103.

(🎝)	نموذج (

Course number: ECE 462	Course name: Computer Systems Architecture
لغة تدريس المقرر: English	Pre-requisites: ECE 343
Credit hours: 4 (3-2-0)	Course level:

Course Description

وصف المقرر:

Computer system organization and design, implementation of CPU datapath and control, instruction set design, memory hierarchy (caches, main memory, virtual memory) organization and management, input/output subsystems (bus structures, interrupts, DMA), performance evaluation, pipelined processors.

Course objectives

أهداف المقرر:

جات التعليم:

- 1. Study of the evolution of computer architecture and the factors influencing the design of hardware and software elements of computer systems
- 2. Understanding Structure and Function of Digital Computer at 3 Levels: Assembly/machine language level: instruction set, System architecture level: subsystems & connections and digital logic level: gates, memory elements, buses.

Course Outcomes

Upon completing the course, the student should be able to:

- 1. Demonstrate the fundamentals of hardware and software technologies that underlie contemporary computer-based information systems
- 2. Establish strong knowledge about underlying structure and theories of computers and programming.
- 3. Develop algorithms for programming solutions and write simple programs.
- 4. Identify the basic elements of hardware and explain their functions and how they fit together to form an architecture.
- 5. Explain how data is represented, manipulated and stored within a computer system.
- 6. Identify and explain the functions of operating systems.
- 7. Explain how computers interact through local and wide area networks.
- 8. Identify various different types of programming languages.
- 9. Explain common data types and structures.

Textbook and	references	المساندة:

الكتاب المقرر والمراجع المساندة:

Textbook: Hennessy, J. L., and D. A. Patterson. Computer Architecture: A Quantitative Approach, 3rd ed. San Mateo, CA: Morgan Kaufman, 2002. ISBN: 1558605967.

References:

Hennessy, J. L., and D. A. Patterson. Computer Architecture: A Quantitative Approach, 2nd ed. San Mateo, CA: Morgan Kaufman, 1995. ISBN: 1558603727. Patterson, D. A., and J. L. Hennessy. Computer Organization and Design: The Hardware/Software Interface, 3rd ed. San Mateo, CA: Morgan Kaufman, 2004. ISBN: 1558606041.

Summarized Course Description

Course number: ECE 491	Course name: Electrical
	Engineering Seminar
لغة تدريس المقرر: English	Pre-requisites: The student must
	pass at least 125 credits
Credit hours: $1 (0+0+2)$	Course level: Level 9 - Fifth Year

Course Description

وصف المقرر:

This course provides a forum for students to discuss and generate ideas on issues related to their field of study. Students conduct an in-depth study of a research topic of their choice, discuss issues with experts in the field of research, work in discussion groups, debate and problem solve on selected issues. In the seminar, the students are given an opportunity to integrate their knowledge, skills and practical experience gained in the program.

Course objectives

أهداف المقرر:

This course seeks to:

- 1. Provide students with the opportunity to improve critical thinking skills by writing and orally defending a persuasive research paper in which arguments counter to the stated position are addressed.
- 2. Provide students with the opportunity to improve oral communication skills by giving two formal oral presentations.
- 3. Provide students with the opportunity to develop skills in writing to a general audience as opposed to writing to a specific audience as typically occurs in courses for the major.
- 4. Provide students with the opportunity to strengthen information literacy skills in order to be able to recognize when information is needed and to locate, evaluate, and use effectively the needed information.
- 5. Provide students with an opportunity to view their own disciplines, their intended careers, and their lives in the larger contexts of life-long learning.
- 6. Bring together students and faculty members from diverse academic fields to reflect on their college careers, to integrate what they have learned with the experiences of others.

الكتاب المقرر والمراجع			مخرجات التعليم:
Textbook and references			المساندة:
Book	Authors	Publisher	Publication
			year

مختصر توصيف المقرر

Course number: ISE 200	Course name: Statics
Language: English	Pre-requisites: MATH 103T + PHYS 102
Credit hours: 3 (3+ 1+ 0)	Course level: Level 3

Course Description

وصف المقرر:

=	
This course introduces the concepts of	يقدم هذا المقرر المفاهيم الهندسية على أساس
engineering based on forces in equilibrium.	القوى في حالة التوازين وتشمل المو اضيع
Topics include:	أنظمة القومن تحادل متحوات القومي العذوم
Force systems; vector analysis of forces,	التصف العولي. تحتيل منجهات العولي، العراق م.
moments and couples in 2 and 3	عرم الأردواج في الأنظمة ذات الأبعاد السائية
dimensions. Equilibrium of forces.	والثلاثية، توازن القوى، التحليل الإنشائي:
Analysis of structures; plane trusses and	الدعامات المستوية والهياكل، توزيع القوي:
frames. Distributed force system: centroids	مراكز الأجسام والأشكال المركبة، عزوم
of simple and composite bodies. Area	القصور الذاتي للمساحات، الاحتكاك
moments of inertia. Analysis of beams.	·
Friction.	

Topics to be covered

الموضوعات التي سيتم تناولها:

List of topics	No. of	قائمة الموضوعات
	lectures	
Introduction	1	مقدمة
Force Systems: 2D and 3D	13	أنظمة القوى
Equilibrium of forces	5	انزان القوى
Analysis of trusses and frames	8	تحليل الدعامات والهياكل
Distribution of forces, centroids of regular and composite bodies	6	توزيع القوى
Area moment of inertias	6	عزم القصور الذاتي للمساحات
Shear force and moment diagrams for simple determinate beams	4	قوى القص والعزوم لدعامات بسيطة
Friction	2	الاحتكاك

Course Aims	أهداف المقرر:
 The objectives of the course are to: 1) Enable students to understand statics of rigid bodies including vector analyses, forces 	تتلخص أهداف هذا المقرر في ما يلي: 1) تمكين الطالبات من فهم ميكانيكية الأجسام في حالة السكون وتحليل القوى والمتجهات
2) Determine centers of mass and moments of inertia	2) تحديد مراكر الكتلة وعرم الفصور الداني 3) تطبيق مبادئ الميكانيكا الأساسية لتحليل
 Apply of basic mechanics principles for the analysis of static engineering structures. 	المنشآت الهندسية الثابتة.

مخرجات التعليم: (الفهم والمعرفة والمهارات الذهنية والعملية)

Apply the concepts of equilibrium to various	تطبيق مفاهيم الاتزان على المنشآت المختلفة
structures.	
Draw free-body diagrams of particles and rigid	رسم مخططات الجسم الحر للأجزاء
bodies.	والاجسام الصلبة
Determine internal forces in structures and	تحديد القوى الداخلية في المنشآت وقوة القص
shear force and bending moment in beams.	وعزم الانحناء في الدعامات
Calculate centroid and moment of inertia of	حساب مركز الثقل وعزم القصور الذاتي
simple and complex shapes.	للأشكال البسيطة والمعقدة

يفترض بالطالبة بعد در استها لهذا المقرر أن تكون قادرة على:

الكتاب المقرر والمراجع المساندة:

سنة النشر	اسم الناشر	اسم المؤلف	اسم الكتاب
2012	John Wiley & Sons, Inc.	J.L. Meriam, L.G. Kraige	Engineering Mechanics Volume 1 Statics 7 th edition
2012	Prentice Hall	Russell C. Hibbeler	Engineering Mechanics: Statics, 12th Edition

Course number: ISE 201	Course name: Engineering Drawing
Language: English	Pre-requisites:
Credit hours: 3 (1+4 +0)	Course level: Level 4

Course Description

وصف المقرر:

Introduction: Skills of freehand sketching. Methods of projection: orthographic, isometric. Dimensioning of views. Third view prediction. Primary and successive auxiliary views. Intersections of surfaces and bodies. Development of surfaces. Sectioning. Introduction to assembly drawings. Steel sections. Standards and conventions. Computer Aided Graphics using SOLIDWORK crafting package. Applications

Course objectives

أهداف المقرر :

• This course is intended to cover theory and practical techniques of engineering drawing. The course teaches the use of Solidworks as a CAD tool in making engineering drawings.

Course Outcomes

مخرجات التعليم:

Upon completing the course, the student should be able to:

1.	Develop 3D solid models using modern engineering 3D software, through
	1.1 Using sketching commands and entities relationships,
	1.2 Using Extrude and Extrude Cut Commands,
	1.3 Using Revolve and Revolve Cut Commands,
	1.4 Using 3D sketch Commands,
	1.5 Using Sweep and Sweep Cut Commands,
	1.6 Using Loft and Loft Cut Commands,
	1.7 Using Assembly Commands to assemble several parts to create 3D
	assembled Models.
2.	Use Drawing Sheet Commands to create:
	2.1 Orthographic and auxiliary views in 2D working drawings sheets.
	2.2 Section views in 2D working drawings sheets.
3.	. Conclude 3D models out of 2D models.

4. Use Sheet Metal Commands needed to develop sheet metals models.

الكتاب المقرر والمراجع المساندة: Textbook and references

Book	Authors	Publisher	Publication
			year
Students Manual, Solid			
Works notes, prepared			
Technical Drawing with	Frederick E.	Pearson	2014
Engineering Graphics,14th	Giesecke		
Edition			
Solidworks tutorials,		Solidworks Help	

Course number: ECE 201	Course name: Programming	
	Applications For Engineers	
لغة تدريس المقرر: English	Pre-requisites: CS 110T	
Credit hours: 3(2+2+0)	Course level: Level - 5	

Course Description

Fundamental principles, concepts and methods of programming (C and MATLAB), with emphasis on applications in the physical sciences and engineering. Basic problem solving and programming techniques; use of programming logic in solving engineering problems.

Course objectives

أهداف المقرر:

وصف المقرر:

- 1. Give students an introduction to the uses of computer languages in the analysis of contemporary scientific problems covering the basic syntax and structure with examples drawn from real applications.
- 2. Covers both conceptual areas of converting a problem to be solved into a computer-based solution, and specific aspects of individual languages and the types of problems they are best suited to solve.
- 3. Emphasis is placed on the importance of structure, documentation, major toolboxes and libraries, interfacing techniques and platform specific issues.

Course Outcomes

مخرجات التعليم:

Upon completing the course, the student should be able to:

- 1. Demonstrate competency in the fundamental principles, concepts and methods of programming (C and MATLAB), with emphasis on developing solutions in the domains of physical sciences, mathematics, and engineering.
- 2. Demonstrate the ability to function as part of a technical team to generate the solution to a programming problem.
- 3. Explore common programming concepts in various computing environments and implement those concepts across more than one language.
- 4. Analyze alternative algorithm designs to implement a solution designed to make efficient use of limited resources of the computer.

Textbook and references

الكتاب المقرر والمراجع المساندة:

Text Book:

Forouzan and Gilberg, Computer Science, A Structured Programming Approach Using C, 3rd ed.

References:

1. Problem Solving and Program Design in C, 8th edition, Jeri Hanly and Elliot Koffman, Prentice Hall, 2016.

2. The C Programming Language. 2nd ed. Kernighan, Brian, and Dennis Ritchie. Upper Saddle River, NJ: Prentice Hall, 1988. ISBN: 9780131103627.

3. Matlab, Fourth Edition: A Practical Introduction to Programming and Problem Solving, 4th Edition, Stormy Attaway, Todd Green, ISBN-13: 978-0128045251 ISBN-10: 0128045256.

نموذج (ھے) –

	مختصر ت	وصيف المقرر	
اسم المقرر: (Introduction to	رقم المقرر ورمزه: ECE 203	
ring Design	Engineeri		
المتطلب السابر	بق: MATH 103	لغة تدريس المقرر: English	
مستوى المقرر	ر: Year 3-Level 6	الساعات المعتمدة: (0+2+1)2	
وصف المقرر		Module Description	Ν

Module Description

This course is a sophomore level design course that introduces the basic elements of engineering design with emphasis on teamwork and communication skills. It exposes students to engineering profession, jobs and disciplines. Topics include problem-solving procedure: from problem definition, needs identification, literature review, concept generation, generation of alternatives, selection methodology to solution implementation, and assessment of implementation. Reverse engineering and engineering code of ethics with impact of engineering solutions on society is also discussed. This course gives scheduling practice in open-ended problems, critical and lateral thinking, planning and through design project plus organization of the work and design documentation. It enables students to consider safety, legal, environmental and human factors, and other societal constraints in execution of their design projects.

Module Aims

أهداف المقرر:

The course aims to introduce the engineering design process, the tools and the techniques used for product development or services applied to many engineering disciplines like industrial, mechanical, electrical and computer. This course provides opportunities for students to develop oral and written communication skills and work effectively in teams. It gives students opportunity to practice elements of active learning and demonstrate skills in the engineering design process in completing a design project.

مخرجات التعليم: (الفهم والمعرفة والمهارات الذهنية والعملية)

Take personal responsibility for learning as of how	
to search and collect information and rearrange it	
for a given topic.	
Use skills in teamwork including team norms and	
use effective teams discussion tools such as team	
agenda, minutes and team process check	
Explain problem definition techniques and problem	
solving strategies	
Explain quality, customer expectations, and	
process	
Explain planning components such as Gantt chart,	
deployment chart and critical path	
Discuss ethical issues, safety considerations, and	
environmental, social and cultural impact	
pertaining to the project.	
Present technical work in an organized way using	
modern techniques such as book keeping (Design	
Notebook), using checklist, etc.	
Present professional behaviour in the areas of	
punctuality, time management, meeting deadlines,	

يفترض بالطالبة بعد در استها لهذا المقرر أن تكون قادرة على:

and professional appearance appropriate of engineering professionals	
Develop written and oral communication skills	
while networking with faculty and students.	

الكتاب المقرر والمراجع المساندة:

سنة النشر	اسم الناشر	اسم المؤلف	اسم الكتاب
2001	McGraw Hill	Arvid Eide , Roland Jenison Larry Northup , Lane Mashaw	Introduction To Engineering Design and Problem Solving
2007	Prentice Hall	Fogler, H.S., LeBlanc, S., E	Strategies for Creative Problem Solving
2013	Cengage	John R. Karsnitz, Stephen O'Brien , John P. Hutchinson	Engineering Design: An Introduction
2009	Great Lake Press	W.C. Oakes, L.L. Leone, and C.J. Gunn	Engineering Your Future: A Comprehensive Approach

Topics to be covered

الموضوعات التي سيتم تناولها:

List of topics	No. of Weeks	قائمة الموضوعات
What engineering do? Engineering disciplines and their systems	1	
Learning Culture	1	
Introduction to Engineering Design Process and design team	2	
Creative Problem Solving	2	
Generation of alternative concepts, evaluation of alternatives and selection of a concept. Design defense and performance evaluation and design report	3	
Engineering The Profession and Communication	2	
Architecture and physical function decomposition; human factor, environment, and safety issues in design;	1	
Autonomous Learner, time management and study skills	1	
Engineering codes of ethics and impact of solution on society	1	

Summarized Course Description

Course number: ECE 492- 493	Course name: Capstone Design Course
	Sequence
لغة تدريس المقرر: English	Pre-requisites: GEN 202, Senior Standing
Credit hours: 2 (1+2+0) (each)	Course level: Level 9 & 10

Course Description

وصف المقرر:

A two-semester course sequence that integrates various components of the curriculum in a comprehensive engineering design experience. Design of a complete project including establishment of objectives and criteria, formulation of design problem statements, preparation of engineering designs. The design may involve experimentation, realization and/or computer project. Team design projects, where appropriate, are highly encouraged.

Course objectives

أهداف المقرر :

An integral part of the education provided to undergraduates in engineering is a senior two-semester course sequence in "capstone" design. The objectives of the sequence are to:

- 1. Require application of the knowledge gained in earlier courses to the design process.
- 2. Familiarize the student with the engineering design process: Definition, Synthesis, Analysis and Implementation.
- 3. Improve communication skills.
- 4. Promote organizational skills.
- 5. Stress importance of other influences on design such as economics, reliability, performance, safety, ethics and social impacts.
- 6. Simulate the postgraduate job environment.

Course Outcomes

مخرجات التعليم:

After completing the courses students will able to:

- 1. Design a system or process to meet specifications with engineering constraints.
- 2. Function as a member of an engineering team.
- 3. Utilize technical resources both from prior coursework, as well as from other relevant sources.
- 4. Demonstrate excellent written and oral communication skills related to design project results.
- 5. Demonstrate an understanding of ethical and professional issues as well

as engineering standards related to their projects.

6. Demonstrate an understanding of contemporary issues as related to their projects.

الكتاب المقرر والمراجع المساندة: Textbook and references

Text Book: R. M. Ford and C. S. Coulston, Design for Electrical and Computer Engineers - Theory, Concepts and Practice, New York: McGraw-Hill, 2008 (Recommended Reference) ISBN-10: 0132774208 **References**:

H.F. Hoffman, The Engineering Capstone Course: Fundamentals for Students and Instructors, DOI 10.1007/978-3-319-05897-9_2, © Springer International Publishing Switzerland 2014

(ھ)	لموذج	1
•			~ ~	

ىقرر	مختصر توصيف الم
Course number: ISE 406	Course name: Engineering Management
Language: English	Pre-requisites: ISE 305
Credit hours: 3 (3+ 0 + 0)	Course level: Level 10

Module Description

وصف المقرر:

This course is a general course designed to teach engineers the basic management skills they will need to be effective throughout their careers. It covers organization structure and the role of engineers in management of organizations. The management process, management and planning strategies, managerial functions related to production, inventory and human resources. Topics cover the basic elements of project planning and control including process of project management, strategic and intermediate term planning, organizing, leadership, motivation, finance, budgeting and operations management. Case studies pertaining to engineering problems will be utilized

Module Aims

أهداف المقرر:

This course aims to equip engineers with key management principles and skills, they will need. The skills and knowledge covered in this course include necessary exposure to common engineering management topics such as planning, organizational structure and design, project and financial management and control, leadership, motivation, ethics and professionalism and the role an engineer can play in managing an organization. It also aims to expose students to qualitative tools to manage organizations and give them a chance to work in teams and give oral presentations and write a report.

مخرجات التعليم: (الفهم والمعرفة والمهارات الذهنية والعملية)

) بالطالبة بعد در أسبها لهذا المقرر أن تكون قادره على	يعرص
---	------

Define the basic principles of management as applicable to engineering problems	
Apply appropriate management techniques for	
managing contemporary organizations using	
different case studies	
Use the techniques, skills, and modern	
engineering tools necessary for basic	
engineering management practices	
Apply qualitative tools and techniques to manage organizations like surveys, research, voting and other methods to draw conclusions and make decisions.	
Use appropriate project management tools like MS Project	
Communicate effectively in written/oral	
presentation	
Work effectively in teams	

الكتاب المقرر والمراجع المساندة:

سنة النشر	اسم الناشر	اسم المؤلف	اسم الكتاب
2014	Cengage Learning	Chuck Williams	MGMT
2016	Pearson	Jay Heizer and	Principles of Operation
		Barry Render	Management

Topics to be covered

الموضوعات التي سيتم تناولها:

List of topics	No. of Weeks	قائمة الموضوعات
Introduction to engineering and management	1	
Historical development of engineering management	1	
Forms of business and organizations	1	
Planning & forecasting and decision making	2	
Designing Adoptive organization	2	
Motivating and leading technical people	2	
Project Management	2	
Ethics & Social responsibility	1	
Financial control	2	